
 

.NET GC Internals

Concurrent Mark phase
@konradkokosa / @dotnetosorg

1 / 15



.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 15



Concurrent Mark phase

3 / 15



Concurrent Mark phase

3 / 15



Concurrent Mark phase

Concurrent GCs mark objects while the application is running...😱

3 / 15



Concurrent Mark phase

Concurrent GCs mark objects while the application is running...😱
two problems:

3 / 15



Concurrent Mark phase

Concurrent GCs mark objects while the application is running...😱
two problems:

#1 - how to mark an object while being used? - we were using MT for this...

3 / 15



Concurrent Mark phase

Concurrent GCs mark objects while the application is running...😱
two problems:

#1 - how to mark an object while being used? - we were using MT for this...
#2 - how to get a consistent view while references are changing? - ups...

3 / 15



Problem #1 - marking used objects

can't use MethodTable - manipulating live pointer and cache invalidation

4 / 15



Problem #1 - marking used objects

can't use MethodTable - manipulating live pointer and cache invalidation
we need to store mark information elsewhere - mark array

4 / 15



Problem #1 - marking used objects

can't use MethodTable - manipulating live pointer and cache invalidation
we need to store mark information elsewhere - mark array
each bit maps to 16 bytes (64-bit) or 8 bytes (32-bit) region

so, single byte covers 128B
and mark word covers 512B

4 / 15



Problem #1 - marking used objects

can't use MethodTable - manipulating live pointer and cache invalidation
we need to store mark information elsewhere - mark array
each bit maps to 16 bytes (64-bit) or 8 bytes (32-bit) region

so, single byte covers 128B
and mark word covers 512B

16B granularity is enough - minimum object size is 24B

4 / 15



Problem #1 - marking used objects

can't use MethodTable - manipulating live pointer and cache invalidation
we need to store mark information elsewhere - mark array
each bit maps to 16 bytes (64-bit) or 8 bytes (32-bit) region

so, single byte covers 128B
and mark word covers 512B

16B granularity is enough - minimum object size is 24B
so, in case of 64-bit, we need 8MB of mark array per 1GB of data

4 / 15



Problem #1 - marking used objects

Using mark array during marking graph traversal:

 

5 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects - �ne! We
will visit it anyway.

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects - �ne! We
will visit it anyway.
Already visited object has removed reference to the otherwise unreachable
object

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects - �ne! We
will visit it anyway.
Already visited object has removed reference to the otherwise unreachable
object

well... �ne! We've just created some "�oating garbage" to collect next time.

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects - �ne! We
will visit it anyway.
Already visited object has removed reference to the otherwise unreachable
object

well... �ne! We've just created some "�oating garbage" to collect next time.
Already visited object has added reference to otherwise unreachable object (or
new one)

6 / 15



Problem #2 - consistent view

When references between objects are changing while marking, we may end up in a
few situations:

Not-yet-visited object has modi�ed references to some other objects - �ne! We
will visit it anyway.
Already visited object has removed reference to the otherwise unreachable
object

well... �ne! We've just created some "�oating garbage" to collect next time.
Already visited object has added reference to otherwise unreachable object (or
new one)

well... this is NOT �ne! "The lost object" problem - we will not visit it, and it will be
GCed!😲 6 / 15



Problem #2 - consistent view

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.
Currently visiting object has modi�ed its references - it would require checking
whether such reference has been already visited. If not, it's #1. If yes, it's one of #2-
#4.

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.
Currently visiting object has modi�ed its references - it would require checking
whether such reference has been already visited. If not, it's #1. If yes, it's one of #2-
#4.

Solution: We may 🤯 while trying to solve this.

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.
Currently visiting object has modi�ed its references - it would require checking
whether such reference has been already visited. If not, it's #1. If yes, it's one of #2-
#4.

Solution: We may 🤯 while trying to solve this. But... what if, just, problematic
objects should be revisited?

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.
Currently visiting object has modi�ed its references - it would require checking
whether such reference has been already visited. If not, it's #1. If yes, it's one of #2-
#4.

Solution: We may 🤯 while trying to solve this. But... what if, just, problematic
objects should be revisited? Problematic ⊆ modi�ed.

7 / 15



Problem #2 - consistent view

Already visited object has added a reference to an otherwise reachable object -
whether it is “the lost object” require checking whether we will have chance to
visit such an object.
Currently visiting object has modi�ed its references - it would require checking
whether such reference has been already visited. If not, it's #1. If yes, it's one of #2-
#4.

Solution: We may 🤯 while trying to solve this. But... what if, just, problematic
objects should be revisited? Problematic ⊆ modi�ed. So, revisit all modi�ed!

7 / 15



Concurrent Mark

8 / 15



Concurrent Mark

various algorithms balance the amount of "�oating garbage", number of "revisits"
to make and overall synchronization costs

8 / 15



Concurrent Mark

various algorithms balance the amount of "�oating garbage", number of "revisits"
to make and overall synchronization costs
in .NET, it is based on write barriers:

a code injected to "assign reference" operation (for the time of Concurrent
Mark) - like S.X = t,
responsible for noty�ng that the source object S has changed
unconditionally adds it to the write watch list

8 / 15



Concurrent Mark

various algorithms balance the amount of "�oating garbage", number of "revisits"
to make and overall synchronization costs
in .NET, it is based on write barriers:

a code injected to "assign reference" operation (for the time of Concurrent
Mark) - like S.X = t,
responsible for noty�ng that the source object S has changed
unconditionally adds it to the write watch list

later on write watch list is just a set of additional roots (to revisit and start
traversal from there)

8 / 15



Concurrent Mark

various algorithms balance the amount of "�oating garbage", number of "revisits"
to make and overall synchronization costs
in .NET, it is based on write barriers:

a code injected to "assign reference" operation (for the time of Concurrent
Mark) - like S.X = t,
responsible for noty�ng that the source object S has changed
unconditionally adds it to the write watch list

later on write watch list is just a set of additional roots (to revisit and start
traversal from there)
so, yes - the more references modi�cations during Concurrent Mark, the bigger
write watch list and then revisiting cost

8 / 15



Concurrent Mark

9 / 15



Concurrent Mark

A - initial "stop the world" phase - initial work list is being prepared from stack
and �nalization roots

9 / 15



Concurrent Mark

A - initial "stop the world" phase - initial work list is being prepared from stack
and �nalization roots
B - concurrent mark phase - the main work:

write barriers start to track modi�cations and store them in the write watch
list
concurrent traversal happens - using "to visit list"
at the end, revisit objects from the write watch list

9 / 15



Concurrent Mark

C - �nal "stop the world" phase - to get "the �nal truth":
at this point the mark array should pretty well re�ect the truth
we traverse again from the stack, �nalization, handles, ...

it should be not a lot of work - most objects are already visited!
some �nal bookkeeping - scanning dependent handles and weak references

10 / 15



Concurrent Mark

C - �nal "stop the world" phase - to get "the �nal truth":
at this point the mark array should pretty well re�ect the truth
we traverse again from the stack, �nalization, handles, ...

it should be not a lot of work - most objects are already visited!
some �nal bookkeeping - scanning dependent handles and weak references

D - "garbage collection"

10 / 15



Concurrent Mark - events

BGCDrainMark - information about the number of objects in a "initial work list"
BGCRevisit - how many pages were "dirty" and how many objects have been
eventually marked because of that

11 / 15



Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial

12 / 15



Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial
historically, on Windows, instead of write barrier, there was WriteWatch
mechanism usage to track write watch list-like data:

when allocating a page (4kB), enable write watching by MEM_WRITE_WATCH �ag
later on you can retrieve a list of modi�ed pages by GetWriteWatch system call

12 / 15

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch


Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial
historically, on Windows, instead of write barrier, there was WriteWatch
mechanism usage to track write watch list-like data:

when allocating a page (4kB), enable write watching by MEM_WRITE_WATCH �ag
later on you can retrieve a list of modi�ed pages by GetWriteWatch system call

which is good enough compromise:
no write barrier overhead 👍👍
a lot of "false positive" roots - every S.X = t records the whole 4kB page 👎
blocked usage of the "large pages" 👎

12 / 15

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch


Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial
historically, on Windows, instead of write barrier, there was WriteWatch
mechanism usage to track write watch list-like data:

when allocating a page (4kB), enable write watching by MEM_WRITE_WATCH �ag
later on you can retrieve a list of modi�ed pages by GetWriteWatch system call

which is good enough compromise:
no write barrier overhead 👍👍
a lot of "false positive" roots - every S.X = t records the whole 4kB page 👎
blocked usage of the "large pages" 👎

BUT... during Linux port, it was hard to �nd WriteWatch counterpart API
instead of OS-magic, write barrier was used

12 / 15

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch
https://devblogs.microsoft.com/dotnet/working-through-things-on-other-oss/


Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial
historically, on Windows, instead of write barrier, there was WriteWatch
mechanism usage to track write watch list-like data:

when allocating a page (4kB), enable write watching by MEM_WRITE_WATCH �ag
later on you can retrieve a list of modi�ed pages by GetWriteWatch system call

which is good enough compromise:
no write barrier overhead 👍👍
a lot of "false positive" roots - every S.X = t records the whole 4kB page 👎
blocked usage of the "large pages" 👎

BUT... during Linux port, it was hard to �nd WriteWatch counterpart API
instead of OS-magic, write barrier was used

which worked so well that now even Windows uses it:
it has some, but tolerable, overhead👎
given that it is now the CLR code so...
much more "smart" - like ignoring no references S.I = 44👍
much more �exible - like it may have page-, large page-, "whatever-you-like"-
granularity👍

12 / 15

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch
https://devblogs.microsoft.com/dotnet/working-through-things-on-other-oss/


Concurrent Mark - challenge #1

ef�cient implementation of the write barrier and/or write watch list is not trivial
historically, on Windows, instead of write barrier, there was WriteWatch
mechanism usage to track write watch list-like data:

when allocating a page (4kB), enable write watching by MEM_WRITE_WATCH �ag
later on you can retrieve a list of modi�ed pages by GetWriteWatch system call

which is good enough compromise:
no write barrier overhead 👍👍
a lot of "false positive" roots - every S.X = t records the whole 4kB page 👎
blocked usage of the "large pages" 👎

BUT... during Linux port, it was hard to �nd WriteWatch counterpart API
instead of OS-magic, write barrier was used

which worked so well that now even Windows uses it:
it has some, but tolerable, overhead👎
given that it is now the CLR code so...
much more "smart" - like ignoring no references S.I = 44👍
much more �exible - like it may have page-, large page-, "whatever-you-like"-
granularity👍 However, it is still (current) page-size.

12 / 15

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch
https://devblogs.microsoft.com/dotnet/working-through-things-on-other-oss/


Concurrent Mark phase - inside code

In case of CoreCLR, the core code responsible for concurrent marking exists in
gc_heap::background_mark_phase method. The three most important data
structures are:

mark_array, as we know it already,
background_mark_stack_array for concurrent "to visit list" (aka "mark stack")
c_mark_list, realizing "initial work list" populated at the initial phase

c_mark_list is populated with gc_heap::background_promote_callback method
during stack and �nalization queue scanning and then consumed by
gc_heap::background_drain_mark_list method. This method calls
background_mark_object [🟢] for all objects in c_mark_list and �res a single
BGCDrainMark event at the end (with the initial list size).

13 / 15



Concurrent Mark phase - inside code

As FEATURE_USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP is de�ned, it enables the
software write watch mechanism. You may see its usage in write barriers like
JIT_WriteBarrier_WriteWatch_PreGrow64. The software write watch list is then
consumed by gc_heap::revisit_written_pages method. It calls
revisit_written_page (using the same background_mark_object [🟢] on objects
inside, one by one) on pages returned from get_write_watch_for_gc_heap
method. At the end, a single BGCRevisit event is called with the "dirted" pages
& marked objects counts.

get_write_watch_for_gc_heap uses 4kB-wide ("page") granularity and is tracked
per byte of the table (to avoid multithreading issues) - see the
AddressToTableByteIndexShift in softwarewritewatch.h.

Historically, the write watch list in case of Windows managed by the system
itself and is consumed in the GC within gc_heap::revisit_written_pages
method by calling GCToOSInterface::GetWriteWatch.

14 / 15



Concurrent Mark phase - inside code

All "regular" concurrent marking is done with the help of
gc_heap::background_promote(obj,...) method that through
background_mark_simple(obj) and background_mark_simple1(obj) (the one
utilizing/consuming background_mark_stack_array) traverses the object’s graph
(marking corresponding bits in mark_array inside background_mark1(obj,...)
method).

15 / 15


